109 research outputs found

    Comparison of Whole-Body Cooling Techniques for Athletes and Military Personnel

    Get PDF
    International Journal of Exercise Science 10(2): 294-300, 2017. The purpose of this study was to evaluate cooling rates of The Polar Life PodÂź, a military protocol and cold water immersion. A randomized, repeated measures design was used to compare three treatment options. Participants exercised in an environmental chamber, where they followed a military march protocol on a treadmill, followed by the application of one of three treatments: Cold water immersion tub (5 – 10 °C), Polar Life PodÂź (5 – 10 °C), Ice sheets at onset (5 – 10 °C). Mean cooling rate for CWI was 0.072 ÂșC/min, 0.046ÂșC/min for ice sheets, and 0.040ÂșC/min for The Polar Life PodÂź. There was a significant difference between conditions (F2,26=13.564, p=0.001, ES=0.511, 1-ÎČ=0.969). There was a significant difference in cooling rate among The Polar Life PodÂź and CWI (p = 0.006), and no significant difference among The Polar Life PodÂź and Ice Sheets (p = 0.103). There was a significant difference of time to cool among the three conditions F2,26 = 13.564, p = 0.001 , ES = 0.401, 1-ÎČ = 0.950. Our results support multiple organizations that deem CWI as the only acceptable treatment, when compared to the cooling rates of The Polar Life PodÂź and ice sheets

    Shared decision making in the UK: moving towards wider uptake

    Get PDF
    Shared decision making (SDM) is firmly on the policy agenda in the UK and a recent legal ruling has confirmed its importance. Policymakers, ethicists, professional regulators and societies, patient organisations and now the courts are committed to ensuring that SDM becomes the norm throughout the NHS, but an unfavourable economic climate makes this especially challenging. Considerable progress has been made over the last few years, with new learning from demonstration sites, various initiatives in capacity building and training, wider availability of patient decision aids, and important leadership initiatives. Enthusiasm for this way of working is growing among clinicians, patients and managers, but it could be undermined if SDM comes to be seen primarily as a means of cost control

    Bone Marrow Stem Cells Expressing Keratinocyte Growth Factor via an Inducible Lentivirus Protects against Bleomycin-Induced Pulmonary Fibrosis

    Get PDF
    Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF) is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7) is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC). Several groups have used Mesenchymal Stromal Cells (MSCs) as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs). Using an inducible lentiviral vector (Tet-On) expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung

    Severe polyposis in Apc1322T mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5

    Get PDF
    Background and aims: Adenomatous polyposis coli (APC) is a tumour suppressor gene mutated in the germline of patients with familial adenomatous polyposis (FAP) and somatically in most colorectal cancers. APC mutations impair ÎČ-catenin degradation, resulting in increased Wnt signalling. The most frequent APC mutation is a codon 1309 truncation that is associated with severe FAP. A previous study compared two mouse models of intestinal tumorigenesis, ApcR850X (Min) and. Apc1322T (1322T), the latter a model of human codon 1309 changes. 1322T mice had more severe polyposis but, surprisingly, these tumours had lower levels of nuclear ÎČ-catenin than Min tumours. The consequences of these different ÎČ-catenin levels were investigated. Methods: Enterocytes were isolated from 1322T and Min tumours by microdissection and gene expression profiling was performed. Differentially expressed Wnt targets and other stem cell markers were validated using quantitative PCR, in situ hybridisation and immunohistochemistry. Results: As expected, lower nuclear ÎČ-catenin levels in 1322T lesions were associated with generally lower levels of Wnt target expression. However, expression of the Wnt target and stem cell marker Lgr5 was significantly higher in 1322T tumours than in Min tumours. Other stem cell markers (Musashi1, Bmi1 and the Wnt target Cd44) were also at higher levels in 1322T tumours. In addition, expression of the Bmp antagonist Gremlin1 was higher in 1322T tumours, together with lower Bmp2 and Bmp4 expression. Conclusions: The severe phenotype caused by truncation of Apc at codon 1322 is associated with an increased number of stem cells. Thus, a submaximal level of Wnt signalling favours the stem cell phenotype and this may promote tumorigenesis. A level of Wnt signalling exists that is too high for optimal tumour growth

    Evaluation of Germline BMP4 Mutation as a Cause of Colorectal Cancer

    Get PDF
    Transforming growth factor-ù (TGF-ù) signalling plays a key role in colorectal cancer (CRC). Bone morphogenetic protein-4 (BMP4) is a member of the TGF-ù family of signal transduction molecules. To examine if germline mutation in BMP4 causes CRC we analysed 504 genetically enriched CRC cases (by virtue of early-onset disease, family history of CRC) for mutations in the coding sequence of BMP4. We identified three pathogenic mutations, p.R286X (g.8330C>T), p.W325C (g.8449G>T) and p.C373S (g.8592G>C), amongst the CRC cases which were not observed in 524 healthy controls. p.R286X localizes to the N-terminal of the TGF-ù1 prodomain truncating the protein prior to the active domain. p.W325C and p.C373S mutations are predicted from protein homology modelling with BMP2 to impact deleteriously on BMP4 function. Segregation of p.C373S with adenoma and hyperplastic polyp in first-degree relatives of the case suggests germline mutations may confer a juvenile polyposis-type phenotype. These findings suggest mutation of BMP4is a cause of CRC and the value of protein-based modelling in the elucidation of rare disease-causing variants. © 2010 Wiley-Liss, Inc

    Requirement for Interaction of PI3-Kinase p110α with RAS in Lung Tumor Maintenance

    Get PDF
    SummaryRAS proteins directly activate PI3-kinases. Mice bearing a germline mutation in the RAS binding domain of the p110α subunit of PI3-kinse are resistant to the development of RAS-driven tumors. However, it is unknown whether interaction of RAS with PI3-kinase is required in established tumors. The need for RAS interaction with p110α in the maintenance of mutant Kras-driven lung tumors was explored using an inducible mouse model. In established tumors, removal of the ability of p110α to interact with RAS causes long-term tumor stasis and partial regression. This is a tumor cell-autonomous effect, which is improved significantly by combination with MEK inhibition. Total removal of p110α expression or activity has comparable effects, albeit with greater toxicities

    Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice

    Get PDF
    In order to identify new genes with differential expression in early intestinal tumours, we performed mRNA (messenger ribonucleic acid) expression profiling of 16 human and 63 mouse adenomas. All individuals had germline APC mutations to ensure that tumorigenesis was driven by ‘second hits’ at APC. Using stringent filtering to identify changes consistent between humans and mice, we identified 60 genes up-regulated and 151 down-regulated in tumours. For 22 selected genes—including known Wnt targets—expression differences were confirmed by qRT–PCR (quantitative reverse transcription polymerase chain reaction). Most, but not all, differences were also present in colorectal carcinomas. In situ analysis showed a complex picture. Expression of up-regulated genes in adenomas was usually uniform/diffuse (e.g. ITGA6) or prominent in the tumour core (e.g. LGR5); in normal tissue, these genes were expressed at crypt bases or the transit amplifying zone. Down-regulated genes were often undetectable in adenomas, but in normal tissue were expressed in mesenchyme (e.g. GREM1/2) or differentiated cells towards crypt tops (e.g. SGK1). In silico analysis of TCF4-binding motifs showed that some of our genes were probably direct Wnt targets. Previous studies, mostly focused on human tumours, showed partial overlap with our ‘expression signature’, but 37 genes were unique to our study, including TACSTD2, SEMA3F, HOXA9 and IER3 (up-regulated), and TAGLN, GREM1, GREM2, MAB21L2 and RARRES2 (down-regulated). Combined analysis of our and published human data identified additional genes differentially expressed in adenomas, including decreased BMPs (bone morphogenetic proteins) and increased BUB1/BUB1B. Several of the newly identified, differentially expressed genes represent potential diagnostic or therapeutic targets for intestinal tumours

    CONFIRM: a double-blind, placebo controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial

    Get PDF
    Background: Mesothelioma is an incurable, apoptosis-resistant cancer caused in most cases by previous exposure to asbestos and is increasing in incidence. It represents a growing health burden but remains under-researched, with limited treatment options. Early promising signals of activity relating to both PD-L1- and PD-1-targeted treatment in mesothelioma implicate a dependency of mesothelioma on this immune checkpoint. There is a need to evaluate checkpoint inhibitors in patients with relapsed mesothelioma where treatment options are limited. Methods: The addition of 12 months of nivolumab (anti-PD1 antibody) to standard practice will be conducted in the UK using a randomised, placebo-controlled phase III trial (the Cancer Research UK CONFIRM trial). A total of 336 patients with pleural or peritoneal mesothelioma who have received at least two prior lines of therapy will be recruited from UK secondary care sites. Patients will be randomised 2:1 (nivolumab:placebo), stratified according to epithelioid/non-epithelioid, to receive either 240 mg nivolumab monotherapy or saline placebo as a 30-min intravenous infusion. Treatment will be for up to 12 months. We will determine whether the use of nivolumab increases overall survival (the primary efficacy endpoint). Secondary endpoints will include progression-free survival, objective response rate, toxicity, quality of life and cost-effectiveness. Analysis will be performed according to the intention-to-treat principle using a Cox regression analysis for the primary endpoint (and for other time-to-event endpoints). Discussion: The outcome of this trial will provide evidence of the potential benefit of the use of nivolumab in the treatment of relapsed mesothelioma. If found to be clinically effective, safe and cost-effective it is likely to become the new standard of care in the UK

    A multinational case series describing successful treatment of persistent SARS-CoV-2 infection caused by Omicron sublineages with prolonged courses of nirmatrelvir/ritonavir.

    Get PDF
    The optimum treatment for persistent infection with SARS-CoV-2 is not known. Our case series, across 5 hospitals in 3 countries, describes 11 cases where persistent SARS-CoV-2 infection was successfully treated with prolonged courses (median 10 days, range 10-18) of nirmatrelvir/ritonavir (Paxlovid). Most cases (9/11) had haematological malignancy and ten (10/11) had received CD20 depleting therapy. The median duration of infection was 103 days (IQR 85-138). The majority (10/11) were hospitalised, and seven (7/11) had severe/critical disease. All survived and 9/11 demonstrated viral clearance, almost half (4/9) of whom received nirmatrelvir/ritonavir as monotherapy. This case series suggests prolonged nirmatrelvir/ritonavir has a role in treating persistent infection
    • 

    corecore